Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503567

RESUMEN

AIMS: Determine the wheat rhizosphere competence of Trichoderma gamsii strain A5MH and in planta suppression of the Pythium root and Fusarium crown rot pathogens Globisporangium irregulare and Fusarium pseudograminearum. METHODS AND RESULTS: Wheat was continuously cropped (eight years) at a minimum tillage, low growing season rainfall (GSR ≤ 170 mm) site shown as highly conducive to Pythium root and Fusarium crown rots. Root isolation frequency (RIF) and qPCR were used to determine the rhizosphere dynamics of strain A5MH and the target pathogens at tillering, grain harvest, and in postharvest stubble over the final 2 years. Strain A5MH actively colonized the wheat rhizosphere throughout both growing seasons, had high root abundance at harvest [log 4.5 genome copies (GC) g-1] and persisted in standing stubble for at least 293-d postinoculation. Globisporangium irregulare was most abundant in roots at tillering, whereas F. pseudograminearum was only abundant at harvest and up to 9-fold greater in the drier, second year (GSR 105 mm). Strain A5MH decreased RIF of both pathogens by up to 40%, root abundance of G. irregulare by 100-fold, and F. pseudogaminearum by 700-fold, but was ineffective against crown rot in the second year when pathogen abundance was >log 6.0 GC g-1 root. Strain A5MH increased crop emergence and tillering biomass by up to 40%. CONCLUSIONS: Further trials are required to determine if the A5MH-induced pathogen suppression translates to yield improvements in higher rainfall regions where non-cereal rotations reduce crown rot inoculum.


Asunto(s)
Fusarium , Hypocreales , Pythium , Estaciones del Año , Triticum , Fusarium/genética , Rizosfera , Enfermedades de las Plantas/prevención & control , Grano Comestible
2.
J Appl Microbiol ; 134(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37188640

RESUMEN

AIMS: Develop quantitative assays (qPCR) to determine the wheat rhizosphere competence of inoculant strains Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6, and their suppressive efficacies against the sharp eyespot pathogen Rhizoctonia cerealis. METHODS AND RESULTS: Antimicrobial metabolites of strains W10 and FD6 decreased in vitro growth of R. cerealis. A qPCR assay for strain W10 was designed from a diagnostic AFLP fragment and the rhizosphere dynamics of both strains in wheat seedlings were compared by culture-dependent (CFU) and qPCR assays. The qPCR minimum detection limits for strains W10 and FD6 were log 3.04 and log 4.03 genome (cell) equivalents g-1 soil, respectively. Inoculant soil and rhizosphere abundance determined by CFU and qPCR were highly correlated (r > 0.91). In wheat bioassays, rhizosphere abundance of strain FD6 was up to 80-fold greater (P < 0.001) than strain W10 at 14 and 28 days postinoculation. Both inoculants reduced (P < 0.05) rhizosphere soil and root abundance of R. cerealis by up to 3-fold. CONCLUSIONS: Strain FD6 exhibited greater abundance in wheat roots and rhizosphere soil than strain W10 and both inoculants decreased the rhizosphere abundance of R. cerealis.


Asunto(s)
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/genética , Triticum , Rizosfera , Suelo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Rhizoctonia , Enfermedades de las Plantas/prevención & control
3.
Funct Integr Genomics ; 15(5): 599-610, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26231513

RESUMEN

Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research is providing information to elucidate the antibiosis mechanisms and disease suppressive activities of T. afroharzianum and T. gamsii against soilborne fungal and oomycete plant pathogens.


Asunto(s)
Antibiosis , Pythium/fisiología , Rhizoctonia/fisiología , Trichoderma/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/microbiología , Transcriptoma
4.
Mycol Res ; 110(Pt 10): 1184-92, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17010594

RESUMEN

Powdery mildew of grapevines is difficult to assess visually at the weighbridge, particularly in large consignments of machine-harvested fruit. To facilitate accurate methods for the detection and quantification of the disease in grape samples obtained from both the vineyard and winery, we developed a DNA probe for the pathogen Erysiphe necator. The E. necator-specific 450 bp DNA fragment pEnA1, targets highly repetitive sequences and was isolated from a partial genomic library. In screening for species specificity, clone pEnA1 was used in slot-blot hybridization and detected E. necator DNA from grapes and resultant must and juice, but not from clarified juice and wine. The detection threshold was approximately 50 pg of E. necator DNA per 100 ng total DNA of grape sample and was equivalent to 1-5% of a grape bunch visually affected by powdery mildew. Disease severity, expressed as the percentage of surface area of a bunch with powdery mildew, and E. necator DNA content were highly correlated, r2=0.955, P<0.001. The DNA-based hybridization assay has the potential to predict the severity of powdery mildew in grape samples from the vineyard and in must and juice samples at the winery. The DNA sequence of clone pEnA1 was used to design species-specific primers, the results maintaining the same specificity patterns observed in the initial hybridization assays. The PCR-based assay was sensitive enough to detect approximately 1 pg DNA, being equivalent to 1 conidium per sample. This is the first report to date of the detection of all known phenetic groups of E. necator DNA and of the quantification of DNA from grape samples at the winery. Accurate information on the extent of powdery mildew contamination of grape lots would enable wineries to make more informed decisions about the use of fruit and must.


Asunto(s)
Ascomicetos/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Vitis/microbiología , Vino/microbiología , Ascomicetos/genética , Frutas/microbiología , Amplificación de Genes , Hibridación de Ácido Nucleico , Sensibilidad y Especificidad
5.
Mycol Res ; 109(Pt 7): 799-808, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16121566

RESUMEN

Eutypa lata, the causal agent of Eutypa dieback of grapevines, is difficult to identify on the basis of colony morphology and is often out-competed by other fungi when isolated from wood. To facilitate diagnosis of the pathogen, we designed SCAR primers capable of amplifying DNA of E. lata and constructed a genomic DNA library from which DNA sequences specific to E. lata were identified and sequenced. SCAR primers were used to identify E. lata directly from culture without the requirement for DNA extraction or prolonged incubation periods and could also detect the pathogen in DNA isolated from grapevine wood. RFLP probes were used in slot-blot assays to detect the pathogen in DNA isolated from 1 yr old cane as well as from mature grapevine trunks. The markers developed in this study have the potential to be used as a research tool to gather information on the epidemiology of the disease and to assess the efficacy of potential control agents against E. lata.


Asunto(s)
Ascomicetos/aislamiento & purificación , Vitis/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , ADN de Hongos/análisis , ADN de Hongos/química , ADN de Hongos/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...